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1. Introduction and Summary 

Kane and Scher [18] proposed a mechanical model in order to explain and better 
understand how a falling cat rights herself. Their model cat consists of two iden­
tical axi-symmetric rigid bodies which are joined by a special 'no-twist' joint. The 
first problem is for the model cat to right herself while in freefall with no angular 
momentum beginning from an upside-down position. Kane and Scher, and earlier 
Rademaker and ter Braak [25]' proposed a specific strategy for doing this. But they 
did not study the problem of finding the general strategy for performing the flip. 
A second problem is for the to perform her trick in an optimal way. These can be 
viewed as problems in control theory. 

In earlier papers [22], [21] we developed a general theory for the attitude, or 
orientation control, of deformable bodies in freefall with zero angular momentum. 
These papers were outgrowths of work by Wilczek and Shapere [27] and Guichardet 
[12] . The main point of these earlier works is that a dictionary can be developed 
between the gauge theory of the physicist's and mathematicians, and the problems 
occuring in the orientation control of deformable bodies. Briefly, in this dictionary 
the space of shapes of the body plays the role of the base space, or space-time in the 
physicist's gauge theory. Its tangent space is the space of controls. The state space, 
or configuration space of the body, is principal bundle of the theory. The gauge 
group is the group of rigid reorientations of the body. The gauge field summarizes 
the condition that the angular momentum be zero. 

The purpose of the present paper is to apply our general theory to the Kane­
Scher cat. Without the special no-twist joint, the shape space is the group 80(3) 
with an element in it representing the attitude of one half of the cat relative to a 
frame fixed to the other. The configuration space is Q = 80(3) x 80(3) with one 
80(3) for each body half, and the gauge group is 80(3), acting diagonally on the 
configuration space. 

Here are our main results. 

• The shape space of the model cat is the real projective plane IRp2 embedded 
in 80(3) ~ IRp3 as a (projective) linear subspace. 

• The collision states in which the two body halves coincide form the line at 
infinity, IRpl C IRP2. 

• The reachable states starting from any given state of Q form an 80(3) em­
bedded anti-diagonally in Q. The projection from the reachable states to the 
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no-twist shape space forms the (Z2-quotient of the) Hopf bundle which is a 
principal 0(2) bundle. 

• The control system is defined by an axial vector potential or gauge field -one 
which changes sign under passing to "the other side" of shape space. 

• By deleting the line at infinity shape space becomes the affine plane and the 
structure group reduces from 0(2) to 80(2). 

• In particular, the differential equations which must be solved to 
calculate the reorientation induced by any control strategy can be 
reduced to a single quadrature. 

• The optimal control problem is equivalent to the equations of motion of an 
(axially-) charged particle travelling on the projective plane under the in­
fluence of an axially symmetric (axial) magnetic field and axially symmetric 
metric. 

• We present a simplifying feedback transformation, linear in the controls and 
induced by a coordinate transformation of shape space, which maps the con­
trol system to the maximally symmetric system of this type on 80(3),i.e. the 
one in which all moments of inertias are equal and the joint is at the two 
body's center of mass. 

• If the metric, or cost, on shape space is the pull-back of the rotationally 
invariant metric under the change of variables which induce the feedback 
transformation, then the optimal loops are the original loops of Kane and 
Scher. 

Kane and Scher calculated the reorientation, or holonomy, suffered when their 
model cat traversed a particular class of loops in its shape space. These are the 
loops described in the final item above, and consist of one body half, say the back, 
describing a circular cone relative to a frame attached to the other. Such a loop is a 
geometric circle in the projective plane with its usual rotationally invariant metric. 
In performing their calculation they made a particular nice choice of gauge, or local 
section, for the full bundle Q = 80(3) x 80(3) -+ 80(3). We will see how their 
gauge is suggested naturally from the group theory of the situation. It is essential 
to our calculations as well. 
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3. The General Setting 

3.1. A Gauge Theory for Deformable Bodies. We begin by recalling the 
relations which have been discovered between the theory of orientation control of 
a deformable body and gauge theory. This will also help to set notation. Some of 
the original references are (27), [28], [30] [12], (21), [22], [12]. 

Imagine that we are in freefall with zero total angular momentum. Our problem 
is to reorient ourselves, say right-side-up, by changing our shape. Such a problem is 
faced by gymnasts, falling cats, satellites, etcetera. Our first objective is to control 
our net orientation. This can be represented by a rotation matrix g. Our control 
variables are the deformations dx of our shape. Our possible shapes are represented 
(locally) by a continuous vector variable x. 

Remark 1. Shape deformations are in tum implemented by torques or linear forces 
applied to joints. In this paper we ignore the problem of how to choose these gen­
eralized forces in order to obtain the velocity controls dx needed for a desired reori­
entation. This problem is sometimes called the 'dynamical problem '. Thus the full 
problem divides into two parts, the kinematic which we solve, and the dynamic which 
we don't. For more on the dynamic problem see Bloch et al f4J. Prom examples one 
finds that the 'dynamic problem' can often be solved by essentially differentiating 
the velocities and inverting a matrix to solve for the forces necessary. In these cases 
the kinematic problem is the central problem. (G. Walsh, private communication.) 

Let Q denote the configuration space of a given deformable body. We will 
assume that the motion of the body's center of mass motion is fixed as it is in 
free-fall. This effectively gets rid of the translation subgroup of the group of rigid 
motions of space. The group G of rotations about the center of mass remains, and 
acts on Q by rigidly rotating configurations. We write this action as 

q E Q 1-----+ gq = q' E Q, (1) 

where g EGis the rotation. Two configurations have the same shape if and only 
if they are related in this way by some rotation. Thus the shape space S is the 
quotient space: 

S=Q/G 

whose points consist of G-orbits. Let 

denote the map which assigns to each configuration q its shape x = 7r(q). We say 
that G acts freely if gq = q (for some q) implies that g = e, the identity of the 
group. In this case S is a smooth manifold and 7r gives Q the structure of a principal 
G-bundle. We recall the definition: 

Definition 1. 7r : Q --+ S is a principal G-bundle if there is a covering of S by 
open sets U C S together with a family of diffeomorphisms 
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¢u: (x,g) 1----+ q 

called "local trivializations" with the property that if q = ¢u(x, g) and gl E G then 
glq = ¢u(x, 919)· 

Definition 2. A local section of 7r : Q -+ 8 is a smooth map sUe 8 -+ Q 
satisfying 7r(s(x)) = x 

Every local trivialization uniquely determines a local section 

s:Uc8-+Q 

by the formula 
s(x) = ¢u(x, e) 

Conversely, every local section uniquely determines a local trivialization by the 
formula 

¢u(x, g) = gs(x) 

We may think of local sections as smooth local choices of origin (identity) for the 
fibers Qx = 7r-1 (x) rv G. A local section s(x) is a realization of the shape x as an 
actual configuration q = s(x) in inertial space. 

Recall that by listing the columns of an orthogonal matrix 9 we obtain an 
orthonormal frame. In this manner, we may think of the map q = gs(x) -+ 9 as 
a choice of frame for each configuration q with 7r(q) E U. In the physics literature 
local sections are often referred to as local gauges. 

The control system we will be using is equivalent to conservation of angular 
momentum. We can think of angular momentum as a vector-valued differential 
one-form M(q)dq on the configuration space Q. For each deformation oq of q E Q 
the angular momentum yields a vector M(q)oq which represents the corresponding 
total angular momentum resulting from this deformation of q. In terms of a local 
trivialiation we have the formula: 

M(q)dq = g(I(x)g-ldg + m(x)dx) (2) 

Here I(x) is the locked inertia tensor for the configuration s(x). This means it is 
the moment of inertia tensor of the effective rigid body obtained by locking all of 
the body's joints in the shape x when it is oriented in space according to s(x). 
The configuration change s(x) -+ s(x + dx) results in a total angular momentum 
m(x)dx. The form g-ldg is the angular velocity with respect to a "body" fixed 
frame. ("Body" is in quotes because this frame depends on the choice of gauge s(x).) 
More precisely, g-ldg is the pull-back of the right-invariant Maurer-Cartan form on 
G induced by the local trivialiation: 7r-l(U) C Q -+ U x G -+ G. All of these one­
forms take values in Lie(80(3)), the Lie algebra of 3 x 3 skew-symmetric matrices. 
Lie(80(3)) represents the space of angular velocities and is naturally isomorphic to 
1R3 • Under this isomorphism the Lie bracket (commutator) of matrices turns into 
the cross-product of vectors and the action of 80(3) on Lie(80(3)) by conjugation 
(w -+ gwg- 1 ) becomes the usual action of 80(3) on 1R3 ( w -+ gw). 
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Remark 2. Set I(x,g) = gI(X)g-l and m(x,g) = gm(x)dxg-1 . These are the 
locked inertia tensor and total angular momentum form of the configuration <Pu(x, g) 
= gs(x). And gI(X)-lm (x)dxg- 1 = I(x,g)-lm(x,g). 

We assume that the body's total angular momentum is constant. This will be 
true if the body is in free-fall and air friction is negligible. The control system can 
then be written down once the value of the initial angular momentum is known. We 
will assume that the angular momentum is zero. Left-multiplying our expression 
(2) for total angular momentum by gI- 1g- 1 we obtain 

dg+gI(x)-lm(x)dx = o. 

This is our control system. Rewritten in the standard control notation it is 

x 
9 

u 
-gr(x)(u) 

where u, the control, is a tangent vector to the shape space 8 and where 

rex) = I(X)-l m (x) : Tx8 --> Lie(SO(3)). 

(3) 

(4) 

(5) 

Shapere and Wilczek (28) refer to this formula as "the master gauge" and we will 
occassionally refer to it as such. The formula can be found in Guichardet's paper 
[12). It is implicit in Smale's work on topology and mechanics in the sense that he 
has a construction which when carried out concretely lead to this formula. 

Remark 3. If the angular momentum is some nonzero value J.t, then the control 
system is 

dg = -gr(x)dx + gI(X)-lg-lJ.t 

The last term is a drift term. It breaks the symmetry group from 80(3) (for the 
case J.t = 0) to the subgroup of rotations about the J.t axis. 

3.1.1. Terminology. The vector-valued one-form r above will be refered to as the 
connection one-form. Shapere and Wilczek [27] refer to it as the master gauge 
field. Marsden refers to it as the 'natural mechanical connection'. The formula for 
r together with its relation to gauge theory was first made explicit by Guichardet 
[12]. 

In the context of the geometry of principal bundles our control system (4) is 
called the equation of parallel translation. It is a time-dependent linear differential 
equation for 9 whose coefficients depend on the curve x(t) in shape space. 

The one-form (dg + gr(x))g-l is the expression relative to a local trivialization 
<I>u of a one-form defined on all of Q. This one-form is also called the connec­
tion one-form. Q is a left principal bundle. Warning Most differential geometry 
texts,eg Kobayashi-NOlnizu [19] use right-principal bundles, in which case this for­
mula becomes g-ldg + g-lrg .) 
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3.2. Optimal Control and SubRiemannian Geometry. Kinetic energy de­
fines a Riemannian metric on Q. As an exercise, the reader can check that the zero 
angular momentum deformations are exactly those tangent vectors to Q which are 
orthogonal in to all infinitesimal rotations. (See [22].) As a consequence we may 
and will identify the space of zero angular momentum deformations at q with our 
control space at q, namely the tangent space to shape space S at 7r(q). The space 
of controls at q thus inherits an inner product, or positive definite quadratic form, 
namely the restriction of the kinetic energy to 

Vq = ker(M(q)dq) = zero-angular momentum deformations of q (6) 

More generally, let (u, u)x be a positive definite quadratic form on the space 
of controls u E TxS at x which depends smoothly on x E Sj in other words, a 
Riemannian metric on the shape space. We will investigate the optimal control 
problem which it defines for our control law. 

Problem: Minimize 

E = rT 

~(u(t), u(t»)x(t)dt Jo 2 

among all controls u which steer the state q from an intitial state qo E Q to a 
final state q1 E Q in time T under our control system. (Recall that in a local 
trivialization q = (x, g).) 

How do we come up with this metric on S? We just described one possibility, 
the one induced by kinetic energy on the configuration space. The choice made by 
Shapere and Wilczek was dictated by the desire to minimize power expenditure due 
to transfer of energy to the surrounding fluid. We will take the point of view that the 
fundamental object is the control system and the fundamental problem is providing 
an algorithm for simply getting to the desired point (steering) in a computationally 
feasible manner. From this point of view then, a good metric is one for 
which the optimal control problem is computationally simple. Such a 
metric is found at the end of this paper. 

Whatever the choice of metric, this problem is a special case of the general 
problem of finding minimizing subRiemannian geodesics. Recall that a distribution 
on a manifold Q is a smooth subbundle V c TQ. 

Definition 3. A subRiemannian structure on a manifold Q consists of a distribu­
tion V on Q together with a smoothly varying positive inner product (., .)q defined 
on each plane Vq of this distribution. 

Remark 4. Our deformable body problems have additional structure beyond that 
of the subRiemannian metric. Namely the subRiemannian structures we discussed 
admit G = SO(3) as an isometry group and this isometry group acts transverse to 
the distribution. Consequently (.,.) and V are projectable by 7r to S. In other words 
d7rq(Vq) = TxS and (v, w)q = (d7rqv, d7rqw)x whenever 7r(q) = x and v, wE V q. 

Associated to any subRiemannian metric we have two additional optimal control 
problems. All three problems are minimization problems on the space of absolutely 
continuous paths joining qo to q1· 

J 
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• Minimize the length JOT J(U(t), U(t»)q(t)dt 

• Minimize the time T of travel between qo and ql, subject to the constraint 
that u(t) E Vq(t) and the bounds (u(t), u(t») ::; 1. 

It is well-known to experts that these three minimization problems are equiva­
lent and that their corresponding value functions are related just as in Riemannian 
geometry. 

3.3. Hamilton's Equations and Magnetic Fields. We will review the basic 
facts concerning the Hamiltonian equations governing the solutions to any of the 
three above optimal control problems. For details we refer the reader to [22] [11] 
[26] [23]. 

Let X!,· .. Xm be an orthonormal frame field for 1) relative to the given inner 
product. Let Pi : T*Q --> R be the corresponding momentum functions: 

(p E T;Q and Xi(q) E TqQ so they naturally pair together to form a number.) 
Then the Hamiltonian which governs the normal optimal controls is 

H
Im 2 

n = 2~i=lPi . 

It is easy to see that this function is independent of choice of frame. In particular, 
it is globally defined, even though the Pi may only be locally defined. (For the 
definitions of normal vs. abnormal minimizers see L.C. Young [32] or the recent 
paper [23].) 

With respect to this frame our control system is written 

Hamilton's equations imply 

and 
Ui = ~nijPj 

where n is the skew-symmetric matrix with entries nij = {Pi, Pj }, the Poisson 
brackets of the momentum functions. See [26] for a derivation of these observations. 
The entries nij are in turn the momentum functions for the vector field -[Xi, X j ] 

obtained from Lie bracket, and can be thought of as a kind of 'curvature' of the 
distribution. These equations generalize the equations of motion of a particle in a 
magnetic field. 

The Hamiltonian system for the abnormal extremals is the Dirac type system 
with constraints 

and abnormal Hamiltonian 
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where the Ui are the optimal controls. The corresponding integral curves are pre­
cisely the characteristics for the annihilator of D, which is a submanifold of T*Q. 
To our knowledge, this was first observed by Hsu [17]. A proof can also be found 
in [23]. 

Theorem 1. Any optimal control u(t) for the minimum energy, length, or time 
problem induces a curve q(t) along which there exists a continuous costate p(t) such 
that (q(t),p(t)) solves Hamilton's differential equations corresponding to either Hn 
or Hab. If the extremal is normal (for Hn) then this solution curve is smooth. 

Open Problem Show that the minimizing curves q(t) are smooth in the ab­
normal case. 

The previous theorem characterizes minimizers. But do they exist? We recall 
the classical conditions and theorem of Chow. 

Definition 4. The distribution D is bracket generating at q if it admits a frame 
Ei , i = 1,2, ... ,r such that the Ei together with their iterated Lie brackets, [Ei' E j ]' 
[Ei' [Ej, Ekll, . " span TqQ upon evaluation at q . It is bracket generating if it is 
bracket generating at all points q. 

The bracket generating property is independent of choice of frame. It is also 
generic. Chow's theorem says that if D is bracket generating and Q is connected 
then any two points of Q can be joined by a curve tangent to V, that is, by a solution 
to the control system. (If the distribution is analytic then the bracket generating 
condition is also a necessary condition for joining any two points.) Combining this 
with the Arzela-Ascoli theorem we have: 

Theorem 2. Suppose that V is bracket generating and Q is connected. Also sup­
pose that Q is compact or that the Xi are complete or that the sR metric is the 
restriction to D of a complete Riemannian metric on Q. Then any two points of Q 
can be joined by a solution to the optimal control problem with these as endpoints, 
i.e. by a subRiemannian geodesic which is minimizing. 

4. Effectively Planar Deformable Bodies as Charged Particles 

We return to our class of examples. In the next section we will show that the 
Kane-Scher model cat satisfies the following properties. Property (A): Shape space 
is two-dimensional. Property (B): The structure group G is one-dimensional. (It is 
0(2).) We can then find coordinates (x, y, z) on the configuration space for which 
the first two coordinates coordinatize shape space and the last coordinate is an 
angle representing the group direction. The gauge field has the form dz + r where 
r = A 1(x,y)dx + A 2(x,y)dy. Finally, we can alway arrange that the coordinates 
(x, y) are such that the metric on shape space is diagonal 

(.,.) = d2s = E(x, y)dx2 + G(x, y)dy2. 

The normal Hamiltonian is 
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Since the variable z does not occur explicitly we have 

P3 = 0 

If we interpret the constant of motion P3 as an electric charge then the normal 
Pontrjagin Hamiltonian Hn is the Hamiltonian for a particle with this charge and a 
unit mass travelling on the Riemannian surface 8 through the magnetic field whose 
vector potential is r. The magnetic field is the (pseudo) scalar field B = area~orm. 

Any abnormal extremal must lie in the zero -level set of the magnetic field [[22]], 
[[24)). For the falling cat we will show that this set is empty so that we need not 
worry about the abnormal extremals. 

There is a subtlety which occurs in the falling cat example concerning the dif­
ference between 80(2) and 0(2) gauge fields. The essence of this subtlety is that 
for 0(2) gauge fields, the 'magnetic field', which is now the curvature of an 0(2) 
gauge field need not be a two-form in the standard sense. Instead, it is a two-form 
with values in some real line bundle (the adjoint bundle) over 8. For the falling cat 
S turns out to be the real projective plane and this line bundle is the 'orientation 
bundle'. 

To appreciate how this subtlety comes about it is best to consider our optimal 
control problem when Q is a general principal G-bundle, G an arbitrary Lie group. 
The optimal control Hamiltonian Hn is a G invariant function on T*Q. It follows 
that the Hamiltonian flow descends to (T*Q)jG. Using the connection we can 
identify this quotient with T*8 E9 Ad*(Q), the direct sum of the cotangent bundle 
of shape space with the co-adjoint bundle, which is the vector bundle with fiber 
Lie( G)* associated to Q by the coadjoint action. Roughly speaking the elements in 
the co-adjoint bundle are the Lagrange multipliers which enforce the nonholonomic 
constraint. Now we can identify T*S with TS using the metric. The curvature 
F of the connection-form is a two-form with values in the adjoint bundle Ad( Q) 
dual to Ad*Q. With respect to these reduced variables and identifications the 
Euler-Lagrange equations which govern the normal optimal extremals are 

'Vj;:i:; = J.LF(:i:;,·) 

and 
DJ.L =0 
dt 

These are equations for a curve (x,J.L) with J.L(t) E Ad~(t)Q in in the coadjoint 
bundle. 'V is the Levi-Civita connection on S so that if the fiber variable J.L were 0 
the first equation would say that x is a geodesic on S. The right-hand side of the 
first equation defines a one-form along x which we identify it with a vector field 
along x by using the metric.These are "Wong's" equations [31) for the motion of a 
particle in the Yang-Mills field rover S. For more on this see [22). 

5. Flipping the Model Cats of Kane and Scher 

5.1. The Model and the Gauge of Kane and Scher. The Kane-Scher model 
[18) cat consists of two identical axially symmetric rigid bodies, called the front and 
back halves, joined together along their symmetry axes by a special type of joint. 
These symmetry axes represent the cat's backbone. 
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See Figure 1. 

Figure 1 

For purposes of visualization we think of each body as a right circular cylinder. 
We label the cylinders f and b for "front" and "back". 

We will begin our analysis by supposing the joint to be ball-and-socket; that 
is, there will be no constraint on the relative motion of the two halves other than 
that they are joined at this joint. Later we will impose the no-twist constraint of 
Kane-Scher. This constraint is holonomic. Imposing it is equivalent to replacing 
the ball-and-socket joint with a special type of joint meant to account for the more 
limited class of relative deformations allowed between two vertebrae. 

The angle between the two symmetry axes, 3 f and 3b, will be denoted by 'IjJ. 3 f 
and 3 f are oriented so that they each point out of the common joint. Mark a point 
on the surface of each body half (cylinder) and connect this point to the symmetry 
axis by a vector orthogonal to the symmetry axis. These vectors represent the eat's 
legs. Label them 2f (for front) and 2b (for back). They are principal directions 
of inertia for their body half. Let P denote the plane in 3 -space containing the 
symmetry axes 3 f and 3b. Let () f be the angle between 2 f and this plane P and 
()b the corresponding angle for 2b. More information is required to uniquely specify 
these angles. We insist that they increase as their corresponding leg rotates in a 
positive sense about its symmetry axes. And we suppose that when the angle 'IjJ is 
between 0 and 1T' and the angles () f and ()b are 0 that the components of the feet 
vectors in the direction of the perpindicular bisector 3 f + 3b of the symmetry axes 
is positive. After choosing a local section, this bisector will represent the direction 
'up'. So, we are saying that this configuration corresponds to feet pointing up and 
body bent upwards. With these conventions, together with continuity, the eat's 
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shape is completely specified by the coordinates ('ljJ,Of'(h). However there are 
coordinate singularities at 'ljJ = 0 and 'ljJ = 11". For in these cases the symmetry 
axes are collinear and so do not determine a plane. Also the coordinates (11", Of, Ob) 
and (11", Of + 00 , Ob + (0 ) represent the same shape for any angle 00 , 

We are now going to describe a specific configuration 0" ('ljJ, Of, Ob) which realizes 
the shape with coordinates ('ljJ, Of, Ob). In other words, 0" will be a local section 
for the bundle Q ---> S = shape space. To dot this fix an inertial system of 
axes, xyz. (See §l.) We require that the plane P is the yz plane, and that the 
bisector (3f + 3b) of the angle formed by the symmetry axes is pointed along the 
y-axis. The y-axis represents the up direction. 'ljJ /2 is then the angle between 
each symmetry axes and the y-axis. These requirements, together with continuity, 
uniquely specify 0". For instance 0"(11",0,0) is the configuration in which the cat's 
backbone lies on the z axis and its legs are pointing straight up. We take this to 
be the cat's initial configuration. It represents the initially held upside down cat. 
The 4-tuple ('ljJ,Of,Ob,g) E S1 x S1 X S1 x SO(3) corresponds to the configuration 
gs('ljJ, Of, Ob). These 4-tuples define the Kane-Scher coordinates on the configura­
tion space Q = SO(3) x SO(3) of the Kane-Scher cat. 

By slight abuse of notation we will write 0"( 'ljJ) for the curve 0"( 'ljJ, 0, 0). Let 
R( Of, Ob) denote the tW<rparameter group of material symmetries of the model 
cat obtained by rotating each body half about its symmetry axes by the given 
angle: 

R(Of, Ob)(9f, gb) = (9fexp(Ofe3), gbexp(Obe3)' 
Notation. If w is a vector in space then exp( w) denotes the operation of rotation 

about the waxes by IIwll radians. If we identify vectors with skew-symmetric 
matrices in the standard way ( w corresponds to the skew symmetric operator 
x f---t w X x) then this is the usual exponential of a matrix. Thus exp(Oex) is a 
rotation about the inertial z-axis by 0 radians. 

The Kane-Scher coordinates ('ljJ,Of,Ob,9) can alternatively be defined by 

(7) 

This last equation illustrates the group theoretic signifiance of their frame. The 
configuration space for the model cat is 

Q = SO(3)f x SO(3h 

The bodies are such that the isometry group of Q is 

Isom(Q) = SO(3) x SO(2)f x SO(2)b Xs 7£2 

The first factor represents spatial rotations. The last three terms are the mate­
rial symmetries corresponding to rotating the front body about its symmetry axis, 
rotating the back body about its axis, and switching the two body halves (7£2)' 
The identity component of Isom(Q) is of course 

Isom(Q)O = SO(3) x SO(2)f x SO(2)b 

and (7) describes its action. 0"( 'ljJ) is a slice to the action of Isom (Q)O . This just 
means that it intersects each orbit once. The subscript "s" in front of the 7£2 factor 
stands for semidirect product. It accounts for the fact that when we switch the two 
bodies the actions of SO(2)f and SO(2)b must also be switched. 
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5.2. The Connection Form: Ball-and-Socket Case. Our control system is 
dg + grdx = 0 where r is given by the "master formula" 

(8) 

described in §2. We now calculate I, m and r with respect to the Kane-Scher frame. 
Figure 8 summarizes this frame (choice of gauge; local section) s. 

From Figure 1 we see that 

is the angular momentum due to the deformation a(t/J, 0f,fh) 1---+ a(t/Jl + dt/J, Of + 
dO" ObdOb). Here 13 is the moment of inertia of either body held about its symmetry 
axes and 

s = sin(~), c = cos(~) 
A more involved but still straight forward calculation shows: 

is the inertia tensor, locked at a ( t/J, OJ, Ob). Here II = h are the equal moments of 
inertia of a body half when the corresponding axis passes through the body's center 
of mass, m is the total mass of a body half and 1 is the distance of its center of 
mass from the joint. 

Remark 5. It is clear from Figure 1 that the Kane-Scher frame diagonalizes I. 
Up to the labelling of axes this property characterizes the Kane-Scher frame. 

Define dimensionless parameters, a, {3, by using II as a unit of measure 

A direct calculation using the above results yields 

where 
<P 1 ac 

+ = "2 S2 + ac2 + {3s2 

1 as 
<P ="2 c2 + as2 

Note that the <P ± satisfy the symmetry properties <P + ( -t/J) = <P + (t/J), <P - ( -'l/J) = 
-<p_('l/J). 

Remark 6. The form (9) for r above and the symmetry properties of <P± follows 
directly from the symmetries of the kinetic energy and the group theoretic properties 
of the Kane-Scher frame as described in the previous section. In the language of 
gauge theory the <P 's are the Higgs fields corresponding to the material symmetries. 
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5.3. No Twist. Each cat half has its own angular velocity vector wf' wt>, as 
viewed from an inertial frame. Consider the components of these vectors along the 
respective half's symmetry axis, W3,f = wf • e3f, W3,b = Wb . e3b· Kane and Scher 
introduced the no-twist constraint: 

W3,f = -W3,b 

as a way of modelling the cat's joint. The quantities W3,f and W3,b are called the 
spins. They are the Noether-conserved quantities or momentum maps correspond­
ing to the rotational symmetry about these axes. In Kane-Scher coordinates we 
have W3,f = dBf and W3,b = dBb, the no-twist constraint reads dBf = -dBb, and so 
is a holonomic constraint: 

Bf = -Bb + constant. 

We take the constant to be zero. Thus no-twist shape space is coordinatized by 
('ljJ, B) where 

B = Bf = -Bb. 

Roughly, this constraint says that the cat cannot break her own back. As 
observed by Mike Enos, we can think of the constraint as saying that the two body 
halves are identical tin cans joined so that they roll without slipping along their 
common lids. 

Consider our choice of gauge a('ljJ,B"Bb ) restricted to the no-twist subspace 
Bf = -Bb. By abuse of notation we write it as 

a('ljJ, B) = a('ljJ, B, -B). 

Figure 1 should convince the reader that any change in 'ljJ alone is a zero-angular 
momentum deformation: m(a)(~:) = O. On the other hand, a change in B alone 
leads, by the symmetry of the figure, to a net angular momentum parallel to the 3 
(equals z) axis. Now any deformation of no-twist shape space is a linear superposi­
tion of these two deformations and consequently can only have angular momentum 
along the 3 axis. Again by symmetry, the locked inertia tensor I(a('ljJ, B» is diag­
onal with respect to the xyz axes. It follows that the connection one form, 
a*r = I-1m(a,·) has only one non-vanishing component and this is in 
the 3 direction. It follows that the model cat can only rotate about the 
z-axis! 

From this last result we see that the configuration, or more precisely, the reach­
able set of the zero-angular momentum no-twist model cat can be coordinatized by 
variables ('ljJ, B, X) according to the rule To summarize 

('ljJ, B, X) ~ g(X)R(B, B)c('ljJ) 

Here 
9 = g(X) = exp(xez) 

is a rotation about the z-axis by X radians. 

(10) 

We now find the explicit form for the connection. To do this, plug the no-twist 
constraint into the general form (9) of the connection form. This yields 

(11) 
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(Please excuse the double use of "r". It should cause no confusion.) It is the 
no-twist connection one-form and describes the effect of no-twist deformations on 
the model cat's orientation. Explicitly, for small loops c we have the reorientation 
formula 

91 = exe390 

where 90 and 91 are the initial and final orientations and where 

x = - i r(1/;)d(). 

We will say precisely what we mean by "small" later. 
There are two remarkable things concerning formula (11). The first we have 

already pointed out, but is worth repeating.Fact 1: The reorientation can be 
obtained by a single quadrature. (this is false for the general parallel transport law 
9 = A(t)9 on 80(3) and hence for the model cat with built with a ball-and-socket 
joint.) Fact 2: The parameter (3 which describes the distance between the joint 
and either body's center of mass does not occur in the formula. It follows that the 
reorientation of the model cat is independent of this distance and in particular we 
would obtain the same reorientation X even if the bodies were joined at their mass 
centers (provided the ratio a: of moments of inertia is kept the same). 

5.4. The Global Structure of the No-twist Constraint. We have just seen 
the remarkable fact that the no-twist connection form takes values in a one­
dimensional subalgebra of Lie(80(3)) and its as a consequence the fact that its 
holonomy group lie in a one-parameter subgroup of 80(3). At first glance, one 
might think this group is 80(2). But in fact it is 0(2). In the language of gauge the­
ory, imposing the no-twist constraint has reduced the structure group from 80(3) 
to 0(2) C 80(3). The following cartoon illustrates a holonomy in 0(2) but not in 
80(2). In this cartoon the body halves must pass through each other at the top of 
their motion's arc. 

t / 
b • f 

t 
1 

f • b 

Figure·2 

From the previous section we know that the set Qnt of configurations accessible 
by zero angular momentum no twist deformations from a given configuration is 
locally coordinatized by (1/;, (), X). We have a corresponding no-twist shape space 
and bundle: 

7r : Qnt --+ 8nt 

We will now show that this bundle is the principal 0(2)-bundle 

80(3) --+ lRP2 
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In order to do this it is convenient to reorient the symmetry axis of the back body 
in the opposite sense of our original orientation. This defines new coordinates on Q. 
(This is the choice made by Kane and Scher.) Also the angle between the symmetry 
axes with this new orientation is related to the old orientation by 1/Jnew = 1/Jold + 1r. 

In terms of our old Kane-Scher coordinates this coordinate change is given by 

With respect to these new coordinates the no-twist constraint is 

And our slice 0"( 1/J) becomes 

O"new(¢) = (e~e"e-~el) 

so that the no-twist configurations are coordinatized by (X, ¢, 0) with 

gl = eXl e3 ecPl e , eO, e3 

g2 = eX2e3ecP2e'e02e3 

(Euler coordinates). Then the no-twist configuration space Qnt C Q is defined by 

The projection 7r : Q -+ 8 for full configuration space can written 

7r(9I,g2) = g1 1g2. 

For points in Qnt this reads 

7r(gI,g2) = e-Oe3ecPeleOe3 = exp(¢(cosOe3 + sinOe2)) 

Thus 7r(Qnt) = exp(JR2) A simple calculation now shows that 

exp(JR2) = JRp2 C JRp3 = 80(3) = exp(JR3). 

This shows that the no-twist shape space 8nt is the real projective plane 
as claimed in the introduction. 

We will now show that Qntis isomorphic, as a smooth 0(2)-bundle over 8nt , to 
the frame bundle 80(3)) of JRp2. Set 
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and consider the involution: 

i(91,92) = (10392103, 10391103) 

of Q. A straightforward calculation shows that 

so that in our Euler angle coordinates 

RICHARD MONTGOMERY 

i(X1> <P1,fh, X2, <P2, ()2) = (X2, -<P2, ()2, Xl, -<PI, ()1). 

This shows that the fixed point set of i is Qnt. Observe that 

i(9I, 1039103) = (9, 10391103) 

and that any element 92 of G can be written in the form 1039103. This shows that 
the fixed point set of i is the set elements (91) 92) E Q = G x G of the form 
(9,1039103), This proves that Qnt :::= SO(3). Define the map 11" : Qnt = SO(3) -+ 

Snt = lRp2projection Q -+ S = Q/G to Qnt C Q. From the work we have done, 
we see that 11" is the quotient map for the action of the 0(2) C G. It follows that 11" 

is a version of the standard Hopf fibration S3 = SU (2) -+ S2, namely a quotient of 
it by 7£2. 

Now i is an isometric involution with respect to the kinetic energy metric or 
the subRiemannian structure of Q. It follows that Qnt is totally geodesic with 
respect to both the Riemanian and subRiemannian structures. Consequently any 
free motion or optimal path for Q, whose end points line on Qnt must lie entirely 
in Qnt. (These facts can also be proved using the dynamical invariance of the spins 
W3, j, W3, b under the corresponding Hamiltonian flows.) In physical terms no 
torques are needed to impose the no-twist joint beyond those needed to 
impose the connection of the two halves (i.e. to impose a ball-and-socket 
joint) as long as initial velocities are tangent to the no-twist configuration 
space, i.e., as long as the cat does not start off by trying to break her own back. 

5.4.1. No-Twist Symmetries. The symmetry group of the no-twist configuration 
space consists of those elements of the full isometry group which take no-twist 
configurations to other no-twist configurations. This group is 

Isom(Qnt) = SO(2) x SO(2) xs 7£2 

where the circles SO(2) are rotations about the 3-axis but are not the previous 
material symmetry rotations, but rather a "diagonal" combination. Specifically, 
(Rl, Rr , 1) E SO(2) x SO(2) xs 7£2 in the identity component of the group acts by 

(Rl, Rr)(91, 92) = (RI91R;1, RI92R;1) 

(The 7£2 switches the body halves as before.) The last two factors act nontrivially 
on the no-twist shape space lRP2 with the elements Rr of the second circle factor 
acting by a standard rotation of the projective plane about a fixed point. This fixed 
point is the fully stretched out state. We will mark it and consider it to be the 
origin of the projective plane. That is, it is the center of the standard affine chart. 
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At the other extreme are the collision states. These are the shapes where the 
two body halves coincide, that is, the cat is completely folded up. Such shapes 
form the 'line at infinity' in the projective plane. Recall that this line is in fact 
a topological circle (IRpl) and that one can parameterize this circle as the angle 
between the front and back legs of the completely folded up model cat. 

From the general theory developed in §3 we know that the normal optimal 
extremals for the no-twist cat are characterized as the motions of a charged particle 
on the projective plane travelling through a magnetic field. The metric on projective 
space which defines the cost function should be taken to have the same symmetries. 
For example, the metric induced from the kinetic energy on Q has this property. 
As we discussed, there is one hitch. The particle is "axial" in the sense that it 
is associated to an 0(2) instead of a U(l) = 80(2) gauge theory. But with this 
proviso, we can say that the optimal curves are the motions of charged particles 
travelling through a rotationally symmetric magnetic field on the projective plane. 

5.4.2. Global properties of the Curvature. Recall the coordinate formula 

r = as dO 
c2 + as2 

for the connection form. Its curvature is 

1-(a-l)s2 
o = dA = a ( 2 2)2 ds 1\ dO 

c + as 

where, recall that s = sin'l/J/2 so that ds = ~cd'l/J. Observe that 

1 - (a - 1)s2 > 0 so that 0 =1= O. 

This is because 1 2: a-lor 2 2: a which in turn follows from the inequality 
h + 12 2: 13 , valid for the eigenvalues of any inertia tensor. (2 = a corresponding 
to a degenerate planar body.) 

Since 0 is never zero there can be no abnormal extremals. See §4. Consequently 
we have shown: 

Theorem 3. All optimal controls (minimizing geodesics) for the Kane-8cher model 
cat are normal, no matter what cost function (metric on shape space) is chosen. 

On the other hand there is something paradoxical about the fact that 0 is never 
O. IRp2 is not orientable so it does not admit any nonvanishing two-forms! How 
do we resolve this contridiction? The resolution is that the structure group of the 
bundle is 0(2), not 80(2) and consequently the curvature is not an honest two­
form. Instead, under a change of frame a t-+ cO' corresponding to an element c of 
0(2) which represents the nontrivial class in 0(2)/80(2) = 7£2 we have 

o t-+ cOc = -0 

Such nontrivial representatives c occur in the bundle transitions from the usual 
affine chart (the disc's interior) to one intersecting the line at infinity (one containing 
collision shapes). 

We can now say what we meant by "small" for the loop c in the reconstruction 
(holonomy) formula following [9J. "Small" simply means that the loop is con-
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tractible in IRP2. (Recall that 1fl(IRp2) = ~2 so that there is only one other 
type of loop a besides contractible one.) Any loop for which the two bodies do not 
collide, i.e. does not intersect the line at infinity is small. 

5.5. Summary. We summarize the observations of §4 with a theorem 

Theorem 4. The no-twist condition of Kane and Scher defines totally geodesic 
submanifolds, Qnt C Q, which we call the no-twist configuration space, and 8nt C 
8, which we call the no-twist shape space. These are totally geodesic in both the Rie­
mannian (free motion) and subRiemannian (controlled motion) senses. In physical 
terms this means that when undergoing the optimally controlled or free motions, 
no torques are necessary in order to keep the joint of no-twist type. The torques 
imposed and the motions undergone in such motions are exactly the same as if 
the joint were replaced by a spherical (ball and socket) joint and the corresponding 
problem (free or optimally controlled) solved. 

Qnt is diffeomorphic to 80(3) and hence to IRp3. 8nt is diffeomorphic to the 
real projective plane IRP2. The line at infinity in the plane corresponds to shapes 
where the two body halves are coincident (complete collisions). The restriction of 
the projection Q -t 8 to Qnt gives it the structure of a principal 0(2)-bundle over 
8nt . This bundle is isomorphic to the Hopf fibration bundle 80(3) ~ IRP2. The 
no-twist connection, r, on this bundle, which is defined by the vanishing of angular 
momentum, has symmetry group 80(2) x s ~2 (in addition to the symmetry under 
the action of the structure group which every connection enjoys) where the rotation 
acts on IRp2 in the standard manner by rotating about an axis. The metric on 
no-twist shape space induced by kinetic energy also has this as an isometry group. 
Consequently, both the geodesic and the optimal control flows on Qnt are completely 
integrable. The latter is equivalent to the motion of an 0(2)- charged particle moving 
on the projective plane under the influence of the axially symetric magnetic field 
which is equal to the curvature of the no-twist connection. 

6. Some Specific Reorientations and Steering Strategies 

6.1. A Cartoon. Probably the simplest path resulting in the cat flip is the one 
depicted below. 

o 
a (begin) b 

c 
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In the disc model of the projective plane the curve corresponding to this cartoon 
is 

CD 
6.2. A simple flip. For illustrative purposes we have drawn the collision shapes 
(b) and (c) so that the bodies do not coincide. If we are honest to the model 
they should coincide and then configurations (b) and (c) would represent the same 
shapes, but with one rotated by e pie

2 with respect to the other. This rotation 
represents the the non-identity component of the fiber 0(2) of 80(3) ~ IRP2. It 
is amusing to note that either of the two pieces of this curve on the projective 
plane represent the non-trivial element of 71"1 (IRp2) and together they show that 
7I"1(IRp2) = 7L2 • 

This reorientation maneuver is universal in the sense that it works no matter 
what the values of the parameters a or fJ are. It violates Kane and Scher's small 
back bending criteria ( criterion (c) at the beginning of [18] ) rather spectacularly. 

6.3. The Rademaker-terBraak Meridians. A special class of motions, ap­
parently first studied by Rademaker and ter Braak [25] (see also [18]) are those 
along the meridians "p= const, 0 :$ 0 :$ 271" (see figure). The resulting reorientation 
is 

X("po) = 121< ¢>("po)dO 

as 271" 

c2 + as2 

If we set X = 71" corresponding to the cat flipping we obtain 

or 

1 as 
-
2 c2 + as2 

./, 2. -1 (a ± v'1- a + ( 2
) 

'1-'0 = s~n 
a-I 

6.4. The Conical Motions of Kane and Scher. A slightly more general class 
of loops in shape space are the conical motions introduced by Kane and Scher [18]. 
These are closed curves in shape space for which one body, say the back half, 
sweeps out a circular cone in the frame of the other body. Set x = g"tgbe3. Then 
x sweeps out a geometric circle on the surface of the sphere. The north pole, 
x = (0,0,1) corresponds to the fully folded states. They denote the opening angle 
of the cone by fJ and the angle its axis makes with the north pole by a. One calcu­
lates that their cone is parameterized as x(t) = (sin(fJ)sin(t) , sin(fJ)cos(a)cos(t) + 
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cos(f3)sin(a), -sin({3)sin(a)cos(t) + cos({3)cos(a)). Kane and Scher's variables are 
related to ours as follows. 

Their variables 
'IjJ 
() 

T 
J/I 
s 

v'2 

Our variables 

X 
t, parameter value along curve 
cos('IjJ + 11") = Z component of curve 
a 
sin2('IjJ)~ 

Trig identities imply that their 1 + T is our 2S2 and their 1 - T is our 2c2. 
Applying our parallel translation law (dX = - r( 'IjJ )d()) to their curve yields, after 
some algebra, their differential equation for reorientation, equations (5) and (6) of 
[18]. 

6.5. The Maximally Symmetric Case. Here a = 1 so that both bodies have 
a spherical inertial ellipsoid and 

r = sin('IjJ/2)d(). 

Set </> = 'IjJ /2 and interpret (</>, ()) as the standard coordinates for the upper hemi­
sphere of the unit sphere. Then r is the connection form for the Levi-Civita con­
nection on the round sphere. Globally, it is the unique SO(3)-invariant connection 
for our principal 0(2)-bundle Qnt ---+ Snt = SO(3) ---+ IRP2. 

The kinetic energy induced metric on shape space coincides (up to scale) with 
the unique SO(3) invariant metric on IRP2. In coordinates this is 

Its corresponding normal Hamiltonian is 

1 1 2 1 2 
Hn = 2(a('IjJ)P.p + b('IjJ) (P8 - pxr('IjJ)) 

See §3. Upon lifting to the sphere we recognize this as the Hamiltonian which 
governs the motion of a particle of charge Px (a constant parameter) travelling on 
the round sphere with a monopole at its center. The solutions are "small circles" -
curves of constant geodesic curvature- on S2. These are the the cones of Kane and 
Scher which we just describe. 
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6.6. Can the Cat Flip for Free? Consider the natural metric (kinetic energy 
restricted to zero angular momentum deformations) in the asymmetric case 0: =f 1. 
J. Marsden asked: can the cat "flip for free?" in this case. In other words are there 
any solutions to the free Hamiltonian (total kinetic energy) which are also extremals 
for the optimal control Hamiltonian (kinetic energy minus vertical kinetic energy)? 
If so, must they always involve collisions of the body halves? 

The natural metric is calculated to be 

ds2 = It { 1 + f32 d'¢2 + 20:2 d{P} 
2 o:s2 + c2 

(Recall that the "s" on the right hand side means sin(¥). ) Consequently 

1 2 O:S2 + c2 

Hn = 2{ 1 + f3s2P~ + 20:c2 (pe - r('¢)p)2} 

The class of free and controlled trajectories coincide precisely when Px = O. This 
is most easily seen by observing that Px represents the Lagrange multiplier needed 
to impose the velocity constraint "angular momentum equals zero". Alternatively, 
Hn = (horizontial Kinetic energy) = (total) - (vertical) kinetic energies, and the 
vertical term in linear in px. (See [22].) When Px = 0 we have Hn = H, the 
Hamiltonian for geodesic flow on lRp2 with respect to the given metric ds2. Since 
this metric is rotationally symmetric the usual analysis of geodesic flow on surfaces 
of revolution based on Clairut's theorem, 

Pe = canst., 

is valid. Call this constant J.L and set 

so that 

x = c2 = cos('!I!..) 
2 

0:8
2 + 2 = ~ + 1 - 0: = V (x) 

40:c2 4x 40:-
V is a monotone decreasing function of x and since 0 :::; x :::; 1 it is minimized when 
x = 1 in which case '¢ = O. These correspond to the collisions (the line at infinity). 
Now 

H = g(x)p~ + V(X)J.L2 

with g(x) a positive function so that 

H 
V(x) :::; 2" = canst. 

J.L 

with equality if and only if P'lf; = O. (Look at the graph of V.) Note that P'lf; = 0 
is equivalent to -if; = o. It follows that every free trajectory must pass through the 
the set where x = 1 , i.e. the two body halves must collide. After this '¢ increases 
until the above inequality is an equality. There x bounces back and again passes 
through the line at infinity , x = 1. In other words the 'radial' or '¢ motion is 
always oscillatory and always passes through collision states '¢ = o. In all free 
motions collisions must occur between the body halves! 
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6.7. Impossibility of Rational or Elliptic Solutions with Natural Energy. 
Consider the case a ::j:. 1 , the case of non-maximal symmetry, with either the natural 
cost function used in the previous subsection, or the "maximally symmetric" cost 
d'IjJ2 + c?df)2. This is a completely integrable problem,as are all autonomous one 

degree of freedom systems. 
The standard method of solution is to note that 

. 1 
'IjJ = a('IjJ)P.p 

and then solve for ,(;;2 using the constants of the motion 

All terms are polynomial in sin ~ = s so it is convenient to change variables to s, 
noting that 

Then the equation reads 

·2 = (1- 2) 2Hn + bl(S) (p _ r () )2 
S S ( ) () 0 1 S P'X al S al S 

where ales) = a('IjJ) etc ... 
Adding the fraction on the right hand side, one finds that the numerator has de­

gree at least 6 in s, for generic constants of the motion (Hn, PO, P'X). Consequently 
the system is not integrable either in terms of elliptic or elementary func­
tions. Hyperelliptic functions are needed. 

In the next and final section we show how a judicious yet simple choice of cost 
leads to a problem whose solution is immediate and elementary. 

7. A Change of Variables to Reduce to the case of Maximal Symmetry 

Reconsider the formula 
r(ol.) _ as 

0/ - c2 + a 2 

for the connection form as a change of variables 

s = sine'!/!.) ~ r = res) 
2 

and define an angle c/J, 0 S <P S 7r by 

r = sin(c/Jj2) 

Observe that reO) = 0, r(l) = 1 and that the derivative fa is positive for s ¥ 0,1-
It follows that this change of variables is an invertible orientation preserving map 
of the unit interval. In fact its inverse can be calculated by solving a quadratic 
equation. We get 
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(The choice of + sign in front of the square root coming from the quadratic formula 
is determined by checking the value of the function at r = O. The leading term 
in the MacLaurin expansion is ~ r.) Thus this change of variables also defines a 
diffeomorphism 

¢ = ¢('l/J) 

of the angle interval [0,11"] and thus a diffeomorphism <1>", of Qnt = SO(3) given in 
coordinates by (X,'l/J,f)) I--t (X,¢('l/J),O). 

By construction, under this change of variables 

which is the formula for the maximally symmetric connection under SO(3). Now 
define the cost function to be 

¢~dS2 

where ds2 = d'l/J2 + cos(~)2d02 is the maximally symmetric metric. In terms of the 

new variables this cost function is d¢2 + cos ( * )2d02. We have already found the 
extremals for the maximally symmetric case: they are circles on lRp2! By general 
principles the extremals with respect to our cost function are the inverse image of 
these extremals under the map ¢"'. The entire procedure is constructive. 

Remark 7 (Credits). The idea just presented had its germ in discussions with 
Sastry and company. They told me that what is really important for them is gett 
ing there, not getting there optimally. In other words, the control system is much 
more important than the cost function. Thus one should look for the cost function 
leading to the "simplest" optimal controls. The idea that the maximally symmetric 
cat's kinetic cost function might be such a function is due to Enos. The change of 
variables is mine. 

An algorithm for solving the steering problem is then to transform the initial 
and final points to the symmetric case using <1>"" solve the problem in this case 
using the usual two step procedure, and then transform the resulting curve back 
using <1>",. We recall the "usual two step procedure". Suppose for simplicity that 
the final shape Xl and initial shape Xo lie in the same affine chart and that with 
respect to the trivialization over this chart the final and initial elements can be 
connected, i.e. the holonomy is not in the disconnected part of the structure group 
0(2). Thus we can work over the affine plane and take the structure group to be the 
circle subgroup generated bye3. Let Xl and XO be the final and initial orientations 
of the configurations relative to our coordinates. Then the two step procedure is : 

Algorithm 1. 1. Get from the initial shape to the desired shape Xl by travelling 
along a straight line in the affine plane (A geodesic on lRp2 or any other standard 
choice of curve will work as well.) Calculate the new orientation (parallel transport) 
X2 at Xl resulting from having travelled this line. 

2. Travel around the geometric circle whose oriented area with respect to the 
form d(sin('l/J/2)dO) is X2 - Xl· 
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8. SUMMARY 

The subject has come full circle. We took a long excursion from Kane and 
Scher's original model through bundles and gauge fields. In the end we found that 
the original solutions of Kane and Scher, after a judicious change of variables, are 
in certain senses both the optimal and the simplest solutions. 
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